NNFS
Neural network library from scratch
Loading...
Searching...
No Matches
NNFS Namespace Reference

Classes

class  Activation
 Base class for all activation functions. More...
 
class  Adagrad
 Adagrad optimizer (Adaptive Gradient) More...
 
class  Adam
 Adam optimizer - Adaptive Moment Estimation, one of the most popular and efficient gradient-based optimization algorithms. More...
 
class  CCE
 Cross-entropy loss function. More...
 
class  CCESoftmax
 Cross-entropy loss function with softmax activation. More...
 
class  Dense
 Dense layer. More...
 
class  Layer
 Base class for all layers. More...
 
class  Loss
 Base class for all loss functions. More...
 
class  Metrics
 Metrics class. More...
 
class  Model
 Abstract base class for the model in a neural network. More...
 
class  NeuralNetwork
 A neural network model. More...
 
class  Optimizer
 Base class for all optimizers. More...
 
class  ReLU
 ReLU activation function. More...
 
class  RMSProp
 Root Mean Square Propagation optimizer. More...
 
class  SGD
 Stochastic Gradient Descent optimizer. More...
 
class  Sigmoid
 Sigmoid activation function. More...
 
class  Softmax
 Softmax activation function. More...
 
class  Tanh
 

Enumerations

enum class  ActivationType {
  RELU , SIGMOID , TANH , SOFTMAX ,
  NONE
}
 Enum class for activation types. More...
 
enum class  LayerType { DENSE , ACTIVATION }
 Enum class for layer types. More...
 
enum class  LossType { CCE , CCE_SOFTMAX }
 Enum class for loss types. More...
 

Enumeration Type Documentation

◆ ActivationType

enum class NNFS::ActivationType
strong

Enum class for activation types.

Enumerator
RELU 
SIGMOID 
TANH 
SOFTMAX 
NONE 

◆ LayerType

enum class NNFS::LayerType
strong

Enum class for layer types.

Enumerator
DENSE 
ACTIVATION 

◆ LossType

enum class NNFS::LossType
strong

Enum class for loss types.

Enumerator
CCE 
CCE_SOFTMAX