NNFS
Neural network library from scratch
|
▼NNNFS | |
CActivation | Base class for all activation functions |
CAdagrad | Adagrad optimizer (Adaptive Gradient) |
CAdam | Adam optimizer - Adaptive Moment Estimation, one of the most popular and efficient gradient-based optimization algorithms |
CCCE | Cross-entropy loss function |
CCCESoftmax | Cross-entropy loss function with softmax activation |
CDense | Dense layer |
CLayer | Base class for all layers |
CLoss | Base class for all loss functions |
CMetrics | Metrics class |
CModel | Abstract base class for the model in a neural network |
CNeuralNetwork | A neural network model |
COptimizer | Base class for all optimizers |
CReLU | ReLU activation function |
CRMSProp | Root Mean Square Propagation optimizer |
CSGD | Stochastic Gradient Descent optimizer |
CSigmoid | Sigmoid activation function |
CSoftmax | Softmax activation function |
CTanh | |
CAdagradTest | |
CAdamTest | |
CCanvas | Custom widget for drawing on a canvas |
CCCESoftmaxTest | |
CCCETest | |
CDenseTest | |
CMetricsTest | |
COptimizerTest | |
CPaint | Painting application |
CReLUTest | |
CRMSpropTest | |
CSGDTest | |
CSigmoidTest | |
CSoftmaxTest | |
CTanhTest | |
CTestCanvas |